78 research outputs found

    Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass

    Get PDF
    Unidad de excelencia MarĂ­a de Maeztu MdM-2015-0552Elevated CO2 (eCO2) experiments provide critical information to quantify the effects of rising CO2 on vegetation. Many eCO2 experiments suggest that nutrient limitations modulate the local magnitude of the eCO2 effect on plant biomass but the global extent of these limitations has not been empirically quantified, complicating projections of the capacity of plants to take up CO2. Here, we present a data-driven global quantification of the eCO2 effect on biomass based on 138 eCO2 experiments. The strength of CO2 fertilization is primarily driven by nitrogen (N) in ~65% of global vegetation and by phosphorus (P) in ~25% of global vegetation, with N- or P-limitation modulated by mycorrhizal association. Our approach suggests that CO2 levels expected by 2100 can potentially enhance plant biomass by 12 ± 3% above current values, equivalent to 59 ± 13 PgC. The global-scale response to eCO2 we derive from experiments is similar to past changes in greenness and biomass10 with rising CO2, suggesting that CO2 will continue to stimulate plant biomass in the future despite the constraining effect of soil nutrients. Our research reconciles conflicting evidence on CO2 fertilization across scales and provides an empirical estimate of the biomass sensitivity to eCO2 that may help to constrain climate projections

    Comparison of static chambers to measure CH4 emissions from soils

    Get PDF
    The static chamber method (non-flow-through-non-steady-state chambers) is the most common method to measure fluxes of methane (CH4) from soils. Laboratory comparisons to quantify errors resulting from chamber design, operation and flux calculation methods are rare. We tested fifteen chambers against four flux levels (FL) ranging from 200 to 2300 g CH4m−2 h−1. The measurements were conducted on a calibration tank using three quartz sand types with soil porosities of 53% (dry fine sand, S1), 47% (dry coarse sand, S2), and 33% (wetted fine sand, S3). The chambers tested ranged from 0.06 to 1.8 m in height, and 0.02 to 0.195 m3 in volume, 7 of them were equipped with a fan, and 1 with a vent-tube. We applied linear and exponential flux calculation methods to the chamber data and compared these chamber fluxes to the reference fluxes from the calibration tank. The chambers underestimated the reference fluxes by on average 33% by the linear flux calculation method (Rlin), whereas the chamber fluxes calculated by the exponential flux calculation method (Rexp) did not significantly differ from the reference fluxes (p < 0.05). The flux under- or overestimations were chamber specific and independent of flux level. Increasing chamber height, area and volume significantly reduced the flux underestimation (p < 0.05). Also, the use of non-linear flux calculation method significantly improved the flux estimation; however, simultaneously the uncertainty in the fluxes was increased. We provide correction factors, which can be used to correct the under- or overestimation of the fluxes by the chambers in the experiment.Peer reviewe

    The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx)

    Get PDF
    Climate change is a world-wide threat to biodiversity and ecosystem structure, functioning and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate change impacts across the soil-plant-atmosphere continuum. An increasing number of climate change studies are creating new opportunities for meaningful and high-quality generalizations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re-use, synthesis and upscaling. Many of these challenges relate to a lack of an established 'best practice' for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change. To overcome these challenges, we collected best-practice methods emerging from major ecological research networks and experiments, as synthesized by 115 experts from across a wide range of scientific disciplines. Our handbook contains guidance on the selection of response variables for different purposes, protocols for standardized measurements of 66 such response variables and advice on data management. Specifically, we recommend a minimum subset of variables that should be collected in all climate change studies to allow data re-use and synthesis, and give guidance on additional variables critical for different types of synthesis and upscaling. The goal of this community effort is to facilitate awareness of the importance and broader application of standardized methods to promote data re-use, availability, compatibility and transparency. We envision improved research practices that will increase returns on investments in individual research projects, facilitate second-order research outputs and create opportunities for collaboration across scientific communities. Ultimately, this should significantly improve the quality and impact of the science, which is required to fulfil society's needs in a changing world.Peer reviewe

    Using surveillance data to determine treatment rates and outcomes for patients with chronic hepatitis C virus infection

    Get PDF
    The aim of this work was to develop and validate an algorithm to monitor rates of, and response to, treatment of patients infected with hepatitis C virus (HCV) across England using routine laboratory HCV RNA testing data. HCV testing activity between January 2002 and December 2011 was extracted from the local laboratory information systems of a sentinel network of 23 laboratories across England. An algorithm based on frequency of HCV RNA testing within a defined time period was designed to identify treated patients. Validation of the algorithm was undertaken for one center by comparison with treatment data recorded in a clinical database managed by the Trent HCV Study Group. In total, 267,887 HCV RNA test results from 100,640 individuals were extracted. Of these, 78.9% (79,360) tested positive for viral RNA, indicating an active infection, 20.8% (16,538) of whom had a repeat pattern of HCV RNA testing suggestive of treatment monitoring. Annual numbers of individuals treated increased rapidly from 468 in 2002 to 3,295 in 2009, but decreased to 3,110 in 2010. Approximately two thirds (63.3%; 10,468) of those treated had results consistent with a sustained virological response, including 55.3% and 67.1% of those with a genotype 1 and non-1 virus, respectively. Validation against the Trent clinical database demonstrated that the algorithm was 95% sensitive and 93% specific in detecting treatment and 100% sensitive and 93% specific for detecting treatment outcome. Conclusions: Laboratory testing activity, collected through a sentinel surveillance program, has enabled the first country-wide analysis of treatment and response among HCV-infected individuals. Our approach provides a sensitive, robust, and sustainable method for monitoring service provision across Englan

    Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil

    Get PDF
    Global warming may lead to carbon transfers from soils to the atmosphere, yet this positive feedback to the climate system remains highly uncertain, especially in subsoils (Ilyina and Friedlingstein, 2016; Shi et al., 2018). Using natural geothermal soil warming gradients of up to +6.4 degrees C in subarctic grasslands (Sigurdsson et al., 2016), we show that soil organic carbon (SOC) stocks decline strongly and linearly with warming (-2.8 t ha(-1) degrees C-1). Comparison of SOC stock changes following medium-term (5 and 10 years) and long-term (> 50 years) warming revealed that all SOC stock reduction occurred within the first 5 years of warming, after which continued warming no longer reduced SOC stocks. This rapid equilibration of SOC observed in Andosol suggests a critical role for ecosystem adaptations to warming and could imply short-lived soil carbon-climate feedbacks. Our data further revealed that the soil C loss occurred in all aggregate size fractions and that SOC stock reduction was only visible in topsoil (0-10 cm). SOC stocks in subsoil (10-30 cm), where plant roots were absent, showed apparent conservation after > 50 years of warming. The observed depth-dependent warming responses indicate that explicit vertical resolution is a prerequisite for global models to accurately project future SOC stocks for this soil type and should be investigated for soils with other mineralogies

    Tamm Review: On the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests

    Get PDF
    The supply of nitrogen commonly limits plant production in boreal forests and also affects species composition and ecosystem functions other than plant growth. These interrelations vary across the landscapes, with the highest N availability, plant growth and plant species richness in ground-water discharge areas (GDAs), typically in toe-slope positions, which receive solutes leaching from the much larger groundwater recharge areas (GRAs) uphill. Plant N sources include not only inorganic N, but, as heightened more recently, also organic N species. In general, also the ratio inorganic N over organic N sources increase down hillslopes. Here, we review recent evidence about the nature of the N limitation and its variations in Fennoscandian boreal forests and discuss its implications for forest ecology and management. The rate of litter decomposition has traditionally been seen as the determinant of the rate of N supply. However, while N-rich litter decomposes faster than N-poor litter initially, N-rich litter then decomposes more slowly, which means that the relation between N % of litter and its decomposability is complex. Moreover, in the lower part of the mor-layer, where the most superficial mycorrhizal roots first appear, and N availability matters for plants, the ratio of microbial N over total soil N is remarkably constant over the wide range in litter and soil C/N ratios of between 15 and 40 for N-rich and N-poor sites, respectively. Nitrogen-rich and -poor sites thus differ in the sizes of the total N pool and the microbial N pool, but not in the ratio between them. A more important difference is that the soil microbial N pool turns over faster in N-rich systems because the microbes are more limited by C, while microbes in N-poor systems are a stronger sink for available N. Furthermore, litter decomposition in the most superficial soil horizon (as studied by the so-called litter-bag method) is associated with a dominance of saprotrophic fungi, and absence of mycorrhizal fungi. The focal zone in the context of plant N supply in N-limited forests is further down the soil profile, where ectomycorrhizal (ECM) roots become abundant. Molecular evidence and stable isotope data indicate that in the typical N-poor boreal forests, nitrogen is retained in saprotrophic fungi, likely until they run out of energy (available C-compounds). Then, as heightened by recent research, ECM fungi, which are supplied by photosynthate from the trees, become the superior competitors for N. In N-poor boreal soils strong N retention by microorganisms keeps levels of available N very low. This is exacerbated by an increase in tree C allocation to mycorrhizal fungi (TCAM) relative to net primary production (NPP) with decreasing soil N supply, which causes ECM fungi to retain much of the available soil N for their own growth and transfer little to their tree hosts. The transfer of N through the ECM fungi, and not the rate of litter decomposition, is likely limiting the rate of tree N supply under such conditions. All but a few stress-tolerant less N-demanding plant species, like the ECM trees themselves and ericaceous dwarf shrubs, are excluded. With increasing N supply, a weakening of ECM symbiosis caused by the relative decline in TCAM contributes to shifts in soil microbial community composition from fungal dominance to bacterial dominance. Thus, bacteria, which are less C-demanding, but more likely to release N than fungi, take over. This, and the relatively high pH in GDA, allow autotrophic nitrifying bacteria to compete successfully for the NH4+ released by C-limited organisms and causes the N cycle to open up with leaching of nitrate (NO3−) and gaseous N losses through denitrification. These N-rich conditions allow species-rich communities of N-demanding plant species. Meanwhile, ECM fungi have a smaller biomass, are supplied with N in excess of their demand and will export more N to their host trees. Hence, the gradient from low to high N supply is characterized by profound variations in plant and soil microbial physiologies, especially their relations to the C-to-N supply ratio. We propose how interactions among functional groups can be understood and modelled (the plant-microbe carbon-nitrogen model). With regard to forest management these perspectives explain why the creation of larger tree-free gaps favors the regeneration of tree seedlings under N-limited conditions through reduced belowground competition for N, and why such gaps are less important under high N supply (but when light might be limiting). We also discuss perspectives on the relations between N supply, biodiversity, and eutrophication of boreal forests from N deposition or forest fertilization

    The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx)

    Get PDF
    1. Climate change is a world‐wide threat to biodiversity and ecosystem structure, functioning and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate change impacts across the soil–plant–atmosphere continuum. An increasing number of climate change studies are creating new opportunities for meaningful and high‐quality generalizations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis and upscaling. Many of these challenges relate to a lack of an established ‘best practice’ for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change. 2. To overcome these challenges, we collected best‐practice methods emerging from major ecological research networks and experiments, as synthesized by 115 experts from across a wide range of scientific disciplines. Our handbook contains guidance on the selection of response variables for different purposes, protocols for standardized measurements of 66 such response variables and advice on data management. Specifically, we recommend a minimum subset of variables that should be collected in all climate change studies to allow data re‐use and synthesis, and give guidance on additional variables critical for different types of synthesis and upscaling. The goal of this community effort is to facilitate awareness of the importance and broader application of standardized methods to promote data re‐use, availability, compatibility and transparency. We envision improved research practices that will increase returns on investments in individual research projects, facilitate second‐order research outputs and create opportunities for collaboration across scientific communities. Ultimately, this should significantly improve the quality and impact of the science, which is required to fulfil society's needs in a changing world
    • 

    corecore